Kérem hogy oldalam megtekintését a főoldalon kezdje! Telefon: 30-408-8109 e-mail: maklaryz11@t-online.hu

Bevezetés: Immár több hat év telt el azóta, hogy a mélységélesség titkai c. írásomat publikáltam. Az írás a Digitális Fotó Magazin 2009. januári számában is megjelent. A cikk a fotózás szempontjából nélkülözhetetlen ismereteket tartalmaz. Mégis szomorúan tapasztalom, hogy a mélységélességgel kapcsolatos gondolataim széles körben nem terjedtek el. A fotósok a mélységélesség tekintetében továbbra is a régi, részben félrevezető információkat használva fotografálnak. Be kell látnom, hogy én is felelős vagyok azért, hogy az új, a gyakorlatban sokkal jobban használható munkamódszerem nem terjedt el szélesebb körben. Amikor a mélységélesség leképezési aránytól való függőségét sikerült levezetnem, nagyon büszke voltam magamra, és nem engedtem a írásomat a matematikai levezetés nélkül publikálni. Ez hiba volt, mert a levezetés meglehetősen bonyolult, emiatt sokan nem olvasták végig el az írásomat, és így természetesen a gyakorlati alkalmazás is elmaradt. Most változtatok ezen, itt az előszóban röviden, a gyakorlat felől közelítve röviden bemutatom a módszeremet.

Futólag vegyük sorra a mélységélességgel kapcsolatos ismereteket:

Először is fontos megjegyezni, hogy a mélységélesség az éles zónáról szól. A mélységélességi zóna az a felvételi távolságtartomány, amelyben fekvő téma majd az elkészült képen élesnek fog látszani. A mélységélesség tehát nem ad információt a háttér életlenségének mértékéről, vagy a háttérmosás szépségéről.

A mélységélesség függ a rekesznyílástól. Igen, ez rendben van.

A mélységélesség függ a gyújtótávolságtól. Az állítás tulajdonképpen nem hamis, mert ha a többi paramétert nem változtatva, csak zoomolunk, akkor valóban megváltozik a mélységélesség is. De az állítás nagyon félrevezető, mert ha zoomolunk, akkor már egy teljesen más képet kapunk, két teljesen különböző kép mélységélességét pedig miért hasonlítanánk össze?

mélységélesség mélységélesség

A mélységélesség függ a látószögtől. Ez az állítás teljesen hasonlatos az előzőhöz. Ha nő a látószög, nő a mélységélesség. Ez is igaz, de ez esetben is megváltozik a kép tartalma.

A mélységélesség függ a felvételi távolságtól. Valóban, ha közelebb megyünk a témánkhoz, csökken a mélységélesség. Ekkor azonban ismét egy másik képet kapunk.

A mélységélesség függ a szenzormérettől. Ez az állítás is igaz, de ezen többnyire csak akkor tudunk változtatni, ha lecseréljük a fényképezőgépünket. Sokan azt hiszik, hogy a kisebb szenzorú fényképezőgép törvényszerűen nagyobb mélységélességű felvételt eredményez. De nem így van, a kisebb, DX szenzorméretű géppel is kaphatunk azonos mélységélességű képet, mint a fullméretes fényképezőgépekkel, csak egy fényértékkel nagyobb rekesznyílás mellett. Tehát amilyen mélységélesség adódik egy DX szenzorméretű géppel 2.8-as rekesz mellett, ugyanazt a mélységélességet megkaphatjuk a FX méret esetén 4-es rekesz alkalmazásával. Egy másik példa, ha az FX-es géppel F=1.4 rekesznyílással fényképezünk, akkor ehhez hasonló látványt DX-es gépen F=1.0 rekesz mellett kaphatnánk, de a F=1.0 fényerejű objektív ritka mint a fehér holló.

A fenti mélységélességgel kapcsolatos állításokkal, az elsőt kivéve az a gond, hogy a gyakorlati munka során nem visznek igazán előre. Például ha ,,a nagyobb mélységélesség érdekében" nagyobb látószögű optikát használunk, majd hogy a téma kellően kitöltse a képet, közelebb lépünk, akkor a megoldás irányába szó szerint egy tapodtat sem léptünk előre, mert a mélységélesség változatlan marad. A felvételi távolság változtatásában sem érdemes gondolkodni, mert azt változtatva is megváltozik a képkivágás. Mivel legtöbbször egy konkrét, adott méretű témát szeretnénk lefényképezni, ezért a mélységélesség fotózás közbeni megtervezését a látvány méretéhez kell kötni!

A mélységélesség képlete: mélységélesség

A képlet utolsó tagja a leképezési arány reciproka. A képlet a kerekítések miatt csak a hat méternél kisebb tárgyak fényképezésekor igaz.

Ha le szeretnék fényképezni egy tárgyat, akkor a téma mérete és a szenzor mérete már meghatározza a leképezési arányt. A mélységélességi tartományt akkor tudjuk könnyen irányítani, ha az adott tárgy mérethez határozzuk meg a szükséges rekesznyílást! A mélységélesség tehát csak a rekesznyílástól és a fotózott téma méretétől függ! Ezért ha fotózás közben szeretnénk tudatosan alakítani a mélységélességi tartományt, akkor nem kell a gyújtótávolságra, látószögre, felvételi távolságra gondolnunk. Csupán arra kell figyelnünk, mekkora méretű tárgyat fotózunk, milyen mértékű mélységélességre van szükségünk, és máris adódik egy rekesznyílás amivel dolgoznunk kell. Ez az alábbi táblázat mutatja, mekkora képméret és rekesznyílás esetén hogyan alakul a mélységélesség. Például ha valaki rendszeresen hasonló szűk, 0.5m képkivágású portrékat készít, könnyen memorizálhatja hogy a mélységélesség 2.8 rekesznél 2.6cm, 8 rekesznyílásnál 7.3 cm. Vagyis ha valaki a képmérethez kötve tervezi meg felvétele mélységélességét egyszerű és könnyen memorizálható módszerre lel.

Mélységélesség (cm):

rekesz

A téma mérete:

0.5m
0.8m 1m 1.5m 2m 3m 4m 5m 6m
1.2
1.1cm
3cm
4.7cm
10cm
18cm
42cm
74cm
116cm
168cm
1.4
1.3cm
3.6cm
5.6cm
12cm
22cm
50cm
88cm
139cm
200cm
2
1.8cm
5.1cm
8cm
18cm
31cm
70cm
126cm
198cm
288cm
2.8
2.6cm
7.2cm
11cm
25cm
44cm
101cm
181cm
286cm
420cm
4
3.6cm
10cm
16cm
36cm
63cm
144cm
262cm
421cm
5.6
5.1cm
14cm
22cm
51cm
91cm
210cm
391cm
651cm
8
7.3cm
21cm
32cm
73cm
132cm
316cm
622cm
11
10cm
29cm
46cm
107cm
197cm
512cm
16
14cm
42cm
67cm
161cm
313cm
22
21cm
62cm
100cm
260cm
32
30cm
94cm
160cm
518cm
45
45cm
117cm
244cm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ez azért nagyon praktikus, mert így a különböző témákhoz (például portré, mellkép, egész alakos felvétel, csoportkép) könnyen megtanulható hogy milyen rekeszértékek mellett milyen mélységélességi viszonyok jönnek létre. A fenti táblázatot érdemes fotózáskor is magunknál tartani.

Akkor következzen a mélységélesség titkai c. írásom. A matematikai levezetéseket nyugodtan át lehet ugorni, a fotográfia szempontjából a következtetések fontosabbak.

A mélységélesség titkai

Lehet hogy a mélységélesség nem is függ a gyújtótávolságtól?

A mélységélesség az a felvételi távolságtartomány, amelyen belül levő fotográfiai téma élesen jelenik meg a képen. A mélységélesség tudatos alakítása a fotográfiában alapvető fontosságú. A mélységélesség összefüggései már a fotográfiai tanulmányok kezdetén napirendre kerülnek, a fotósok közt mégis sok téves gondolat, féligazság terjedt el. Azt mindenki tudja, hogy a mélységélesség függ a rekesznyílástól, a gyújtótávolságtól, a tárgytávolságtól, a leképezési aránytól, a képformátumtól. Ez a felsorolás azonban alkalmas a megtévesztésre, mert a felsorolt tényezők egymástól is függenek. Kevesen gondolnak arra, hogy a mélységélesség attól is függ, hogy a képet néző személy a papírképet milyen távolságból szemléli, és milyen a látásélessége. A mélységélesség összefüggései meglehetősen bonyolultak, nem mindegy mit tekintünk kiindulási feltételnek, és a számítások során milyen elhanyagolásokat teszünk.
Számomra alapvető kiindulási feltétel, hogy adott a téma, amit le kell fényképezni. Hogyan alakul tehát a mélységélesség, ha ugyanazt a témát különböző gyújtótávolságú optikákkal fényképezzük?

Hogyan függ a mélységélesség a képformátumtól? Hogyan befolyásolhatjuk a mélységélességet? Ha a felvetett kérdésekre pontos, vagy legalább jó közelítést adó válaszokat szeretnénk kapni, meg kell ismerni a mélységélesség összefüggéseit. A levezetés megértéséhez a középiskolai matematikatudás elégséges, de a türelmetlenebb olvasók a matematikai levezetéseket át is ugorhatják és következtetéseket ennek ellenére is hasznosíthatják.

A levezetés elkezdése előtt célszerű az alapösszefüggéseket átismételni, ehhez nyújt segítséget az 1. ábra.

Az alkalmazott jelölések: .. f = gyújtótávolság...t = tárgytávolság.... k = képtávolság ... d = lencseátmérő..... K = képméret...... T = tárgyméret...... N = rekeszszám

A lencsetörvényből következik, hogy csak azon pontok képe lesz éles a képsíkon, amelyek az fenti egyenletnek megfelelnek. Nyilvánvaló hogy a képsíkon csak egyetlen síkban, a tárgysíkban levő képpontok képe éles. Ha a fotótémánk, vagy annak egy része nem a tárgysíkban fekszik akkor annak képe a képsíkban nem lesz tűéles.
A valóságban azonban nemcsak a tűéles pontot tartjuk élesnek, hanem minden olyan pontot, amelyet papírképre nagyítva a szemünkkel még élesnek látunk. Azt a képsíkon levő legnagyobb ,,pontot" amelynek papírképre nagyított képe még éles, elfogadott szóródási körnek nevezzük.
Az elfogadott szóródási kör átmérőjét szemünk felbontóképessége és a képnézegetési szokásaink határozzák meg. A meghatározás alapja az emberi szem látásélessége, és az a feltételezés hogy a képet a képátlónyi távolságból szemléljük. Ez a két tényező meghatározza a szóródási kör átmérőjét. Láthatjuk, hogy sem a szemünk látásélessége, sem a nézési távolság nem határozható meg pontosan.
Tehát a szóródási kör meghatározása szubjektív elemeket is tartalmaz. Mégis a további számításokhoz az elfogadott maximális szóródási kör átmérőjét meg kell adni. Általánosan elfogadott, hogy bármilyen méretű képhez a képátlóban kb. 1730 éles képpont szükséges. Azt is érdemes megemlíteni, hogy amikor elfogadjuk hogy a képátlóban mindössze 1730 képpont szükséges, azt is állítjuk, hogy a teljes papírkép felületén 1.4 Mpixel elég az éles képhez. Az 1.4 millió éles papírképponthoz a fényképezőgépnek a Bayer-interpoláció és más tényezők miatt kb. 8-10 Mpixelesnek kell lennie. Mivel a szóródási kör átmérőjének elfogadott értékét a képátló 1730-ad részében határozzuk meg, ez azt jelenti, hogy a nagyobb képformátumoknál nagyobb szóródási kört engedünk meg. Más szavakkal a nagyobb formátumoktól sem várunk el nagyobb élességet, mint amennyit a szemünk igényel. A gyakorlatban azonban ennél magasabb igények is felmerülnek, például amikor nem írhatjuk elő a nézőinknek, hogy a képeinket csak a képátlónyi távolságról szemlélhetik, hanem akkor is kifogástalan élességet szeretnénk nyújtani, amikor netán a falra helyezett képünkhöz közelebb lépnek. Hasonlóképpen gondolhatunk azokra is, akik az átlagosnál jobb látásélességgel rendelkeznek. Ezért én a fotográfiai feladatot két csoportra osztom, vannak olyan fotók, amelyek szépségét és lényegét a korlátozott mélységélesség adja, ez esetben helyénvaló az 1730 képpontból adódó szóródási körrel számolni. Más esetekben mint a tájképek, óriásplakát stb. törekedni kell az elérhető legnagyobb élességre, ilyenkor a szóródási kör megengedett értékét szigorúbban határozhatjuk meg. A mélységélesség törvényszerűségeinek megértése mindkét cél eléréséhez szükséges.

A mélységélesség kiszámításához helyettesítsük objektívünket egy ideális lencsével, és 2. ábra segítségével elemezzük a viszonyokat. Az elfogadott maximális szóródási kör átmérőjét e-vel jelöljük. Meg kell jegyezni hogy az ábrán a szóródási kör a jobb áttekinthetőség miatt aránytalanul nagynak van ábrázolva.2.ábra:



Ahol a mélységélesség közeli határa ,,s”, a távoli határa pedig ,,S”. A mélységélesség kiterjedését a ,,DOF” -fal jelölt szakasz mutatja.

........ A leképezési törvény: ebből:

A leképezési törvényt a mélységélesség távoli (S) határpontjára felírva:

Itt szakítsuk meg a levezetést és számítsuk ki a hiperfokális távolságot amelyet H-val jelölünk. A hiperfokális távolság az, amelyre az objektívet élesre állítva a mélységélesség távoli határa a végtelenig tart. Vagyis ekkor S=végtelen, a tárgytávolság pedig azonos hiperfokális távolsággal:

Mivel a lencseátmérőhöz (d) képest a szóródási kör átmérője (e) elhanyagolható:

Vagyis a hiperfokális távolság:

Más alakban: Ahol N a rekeszszám

Ezen rövid kitérő után folytatjuk a mélységélesség levezetését

A mélységélesség távoli határpontjának meghatározása után nézzük a mélységélesség közeli határát (s):
...........

Itt is érdemes egy rövid kitérőt tenni, ha a tárgytávolság helyébe a hiperfokális távolságot helyettesítjük, akkor megkapjuk, hogy a mélységélesség közeli határa a hiperfokális távolság fele. Vagyis ha az objektívünket a hiperfokális távolságra állítjuk, akkor a mélységélesség a hiperfokális távolság felétől a végtelenig tart. Most hogy ismerjük a mélységélesség távoli (S) és közeli (s) határát, a mélységélességet (DOF) könnyen meghatározhatjuk:

Ismét tekintsük a gyújtótávolságtávolságot elhanyagolhatónak a tárgytávolsághoz képest:

Tehát itt az eredmény amit érdemes elemezni. Ha az élesre állított téma a hiperfokális távolság mögött van akkor az élesség nyilvánvalóan a végtelenig tart. Ha a hiperfokális távolságra állítjuk az élességet, akkor a DOF a végtelenig tart. Amikor az élesre állított téma a hiperfokális távolság előtt, de a hiperfokális távolság felénél távolabb van, a fenti képlet tovább nem egyszerűsíthető. Amikor viszont a hiperfokális távolság felénél közelebbről fényképezünk, ami elég gyakran előfordul, akkor a képlet tovább egyszerűsödik és fontos összefüggésre derül fény. Ha tehát t kisebb, mint a hiperfokális távolság fele, akkor nevezőben levő t elhanyagolása 25%-nál kisebb hibát okoz. Tekintettel a szóródási kör meghatározásának pontosságára ez a hibahatár elfogadható. Folytassuk tehát így a levezetést:

Tudjuk hogy:

Ezt a képletet érdemes nagyon figyelmesen megnézni! A mélységélesség tehát egyenesen arányos a rekeszértékkel (N) és az elfogadott szóródási körrel (e). A utolsó tag pedig jó közelítéssel pedig nem más, mint a leképezési arány reciprokának a négyzete! Amikor a fotótémánk mérete és a fényképzőgépünk szenzormérete adott, akkor a leképezési arány már tőlünk függetlenül meg van határozva. Tehát ha a hiperfokális távolság felénél közelebb levő témát fotózunk, akkor a gyújtótávolsággal nem lehet a mélységélességet befolyásolni! A megnövelt gyújtótávolságtávolsághoz ugyanis megnövelt tárgytávolság tartozik és így a leképezési arány változatlan marad. Más szavakkal a mélységélesség nem csak a makrótartományban független a gyújtótávolságtávolságtól mint ahogy ez a makrófotósok körében régóta közismert, hanem ez a tartomány jó közelítéssel a hiperfokális távolság feléig tart. A hiperfokális távolság felénél közelebbről fényképezve a gyújtótávolságtávolság megválasztásával a mélységélesség nem befolyásolható. Ez az eset pedig nagyon gyakran előfordul, mondhatnám, hogy gyakrabban mint az ellenkezője. Ilyenkor a mélységélességet kizárólag a rekeszeléssel irányíthatjuk.

A következő kép bal oldala 2/100mm-es Zeiss, a jobb oldali része 1.2/50mm-es Nikkor objektívvel készült. A rekesznyílás mindkét felvételnél N=2 volt. Az optikai tengelyre kb. 45 fokban elhelyezett mérőszalag mutatja, hogy a mélységélesség mindkét esetben azonos:

A rekeszeléssel tehát növelhetjük a mélységélességet, de tudnunk kell hogy a nagyobb rekeszszámoknál az élességet már a fényelhajlás is korlátozza. A fényelhajlás törvényszerűségeit most nem részletezem, de a 11-nél szűkebb rekesznyílások alkalmazásánál már erre a tényezőre is gondolni kell. Ha a mélységélesség képletére (DOF) visszatekintünk, válasz kapunk arra is, hogyan változik a mélységélesség ha pl. kisfilmről 6x7 méretre térünk át. Mivel mindkét géppel ugyanarról a helyről azonos látószöggel szeretnénk felvételt készíteni, a 6x7-es gépen kétszer akkora gyújtótávolságot kell alkalmazni mint a kisfilmnél.

A dupla gyújtótávolsághoz negyedakkora mélységélesség tartozna, de mivel a megengedett szóródási kör is megduplázódik, az eredmény már csak feleakkora mélységélesség. Ha tehát a 36mm széles kisfilmnél és a kb. kétszer szélesebb 6x7-es képnél azonos rekeszt használunk, akkor a mélységélesség megfeleződik. Ha ezt a lecsökkent mélységélességet rekeszeléssel szeretnénk kompenzálni, akkor két rekeszt kell szűkítenünk a kisfilmes értékhez képest. Hasonlóképpen van ez más esetekben is, ahányszorosan megnöveljük a szenzor méretét, ugyanannyival kell megszoroznunk a rekeszszám értékét ahhoz, hogy egy másik formátumon azonos mélységélességet kapjunk. Az alábbi táblázat mutatja, hogy a különböző képformátumok esetén milyen rekeszértékek mellett kapunk azonos mélységélességet:

 

APS
Leica
645
6x7
16x24mm
24x36mm
41x56mm
56x70mm
1
1.4
2
2.8
2
2.8
4
5.6
4
5.6
8
11
8
11
16
22
16
22
32
45

Ne feledjük, ez a táblázat csak akkor igaz, ha a nagyobb formátumoknál is csak 1730 képpont az élességi követelmény!

Kiegészítések a levezetéshez: Az objektívet egy ideális lencsével helyettesítettük, de ez nem okoz lényeges hibát egy valós optikához képest. A fényképezőgépeknél a felvételi távolságot a filmsíktól számítják, vagyis a felvételi távolság a képtávolság és tárgytávolság összege. A levezetés során a gyújtótávolság is el lett hanyagolva, ezért az eredmény a makrótartományban már nem érvényes, mivel a makrótartományban a képtávolsághoz képest a gyújtótávolság már nem elhanyagolható. Vizsgáljuk meg, hogy a hiperfokális távolság fele a szokásos gyújtótávolságoknál és rekeszértékeknél 24x36mm-es érzékelő (e = 0.025mm) esetén hogyan alakul:

A hiperfokális távolság fele (m):

Rekesz Fókusztávolság(mm)
28 35 50 100 200 300 500
2 8m 12m 25m 100m 400m 900m 2500m
2.8 5.6m 8.8m 18m 72m 288m 648m 1800m
4 4m 6m 12m 50m 200m 450m 1250m
5.6 2.8m 4.4m 9m 36m 144m 324m 900m
8 2m 3m 6m 25m 100m 225m 625m
11 1.4m 2.2m 4.5m 18m 73m 162m 450m
16 1m 1.5m 3m 12m 50m 112m 312m

A táblázatból látható a hiperfokális távolság fele, mert eddig a felvételi távolságig érvényes a levezetés legmeglepőbb eredménye, hogy a mélységélesség a gyújtótávolságtól nem függ. A nagylátószögű objektíveknél és szűkebb rekeszek alkalmazásakor a hiperfokális távolság nagyon közel van, ilyenkor az állítás csak egy közelebbi tartományra érvényes. Az alapobjektívvel és az ennél hosszabb optikáknál viszont az egész műtermi tartományban igaz! Ebbe a tartományba esik a portré és divatfotózás, aktfotózás, és a tárgyfotózás legnagyobb része. Vagyis például egy divatfotónál a gyújtótávolsággal csak a perspektívát változtathatjuk, de a mélységélességet nem! Hogy ne legyen vége a meglepetéseknek, készítsünk egy újabb hasonló táblázatot, de most azt számítsuk ki, milyen szélességű téma fotózásáig érvényes a gyújtótávolságtól való függetlenség elve?! Ez a táblázat is 24x36mm-es érzékelő és e = 0.025mm esetén érvényes.

A téma szélességi mérete (m):

Rekesz gyújtótávolság(mm)
28 35 50 100 200 300 500
2 10.3m 12m 18m 36m 72m 108m 180m
2.8 7.2m 9m 13m 26m 52m 78m 130m
4 5m 6m 8.6m 18m 36m 56m 90m
5.6 3.6m 4.5m 6.5m 13m 26m 39m 65m
8 2.5m 3m 4.3m 9m 18m 28m 45m
11 1.8m 2.3m 3.2m 6.5m 13m 19m 32m
16 1.3m 1.5m 2.2m 4.5m 9m 14m 25m

Ez a táblázat sem semmi! Ha a 16-os rekeszhez tartozó sort kizárhatjuk mert a fényelhajlás miatt itt az élesség már nem kimagasló. Ekkor kimondhatjuk, amikor 3m-nél kisebb témát fényképezünk, akkor a mélységélesség nem függ a gyújtótávolságtól. Ha a nagylátószögű lencséket is kizárjuk, mert pl. a tárgy és divatfotózásnál kevésbé használhatóak, akkor már a 3-6 méternél kisebb méretű témák mind beleesnek abba a tartományba, ahol a mélységélesség független a gyújtótávolságtól.

Láthatjuk tehát a fotográfia jelentős területein a mélységélességet kizárólag a rekeszeléssel irányíthatjuk. Ez az a gondolat, amelynek bizonyításáig el akartam jutni.
A levezetés egyik sarkalatos kiindulási alapja volt, hogy a képátlóban csak 1730 képpont szükséges, és emiatt a nagyobb formátumoknál nagyobb szóródási kör megengedett. Másképpen úgy is fogalmazhatunk, hogy legyen a képen elegendően éles az ami a mélységélességi zónába esik az ezen kívüli képrészek pedig legyenek életlenek. A fenti feltételek szerint készült sokszor művészi hatású képeknél a főtéma az életlen háttér által kerül kiemelésre. Ezen képeknél nemcsak az a fontos, hogy a téma éles legyen, hanem az is hogy a zavaró képrészletek életlenek legyenek.

Az élességgel szemben a fentieknél gyakran sokkal szigorúbb mércét is állíthatunk. Sok képnek az értékét éppen az adja, hogy nagyon éles. Éles közelebbről nézve is, éles nagy méretre nagyítva is. Nyilván amikor valaki nagyfilmes formátumra dolgozik, nem azért vállalja a költségeket és a nehézségeket, hogy ugyanolyan élességű képeket készítsen, mint kisfilmmel. A képek részletgazdagsága sok esetben fontos szerephez jut, és ezért a fotózás fanatikusai nem kis áldozatokat hoznak. Amikor viszont az élességet akarjuk maximalizálni, nem fogadhatjuk el, hogy a képátlóban csak 1730 éles pont legyen hanem a nagyfilmes méreten is olyan kicsi szóródási kört engedünk meg, mint a kisfilmnél. Az igazán jó rollfilmes optikák ha nem is verik meg a kisfilmes csúcs darabokat, de azokhoz nagyon közeli teljesítményt nyújtanak. A élességnek és részletgazdagságnak sok lelkes híve van, gondoljunk csak pl. a Leica körül kialakult legendára. A kisfilmes szóródási kört is szigoríthatjuk egészen addig, ameddig ezt az optikák és a fényelhajlás lehetővé teszi. A kívánatos szóródási kör ilyenkor akár 0.015mm is lehet. Ha a feltételeket ennyire szigorítjuk, akkor a mélységélesség nagyon beszűkül, és az extra éles zónán kívüli, de a szokásos szóródási körnek még megfelelő képrészeket is elfogadhatóan élesnek fogjuk érzékelni.

Azt is érdemes megjegyezni, ha a szóródási kör értékét csökkentjük, a hiperfokális távolság nő, vagyis a mélységélesség gyújtótávolságtól való függetlenségének elve még szélesebb távolságtartományra lesz igaz.

Ha abban a tartományban vizsgálódunk, ahol a mélységélesség független a gyújtótávolságtól, egy olyan mélységélességi táblázatot készíthetünk, amely ,,minden" gyújtótávolságra érvényes. Az alábbi táblázat az 50mm-es és hosszabb fókusztávolságok esetén alkalmazható. A ki nem töltött rublikák természetesen nem azt jelentik, hogy ott nincs mélységélesség, hanem csak azt, hogy ott már a hiperfokális távolság közelébe jutottunk, és ezért ott a mélységélesség számításához már a gyújtótávolságot is figyelembe kellene venni. Tehát ebből a táblázatból jól látható, hogy mely tartomány az, ahol a gyújtótávolság nem befolyásolja a mélységélessséget. Ha a normálobjektívnél rövidebb gyújtótávolságot alkalmazunk, akkor a táblázat ,,fekete zónája" kiszélesedik. Ez a táblázat is 24x36mm-es érzékelő és e = 0.025mm esetére lett kiszámolva:

Mélységélesség (cm):

rekesz

A téma szélessége:

0.5m
0.8m 1m 1.5m 2m 3m 4m 5m 6m
1.2
1.1cm
3cm
4.7cm
10cm
18cm
42cm
74cm
116cm
168cm
1.4
1.3cm
3.6cm
5.6cm
12cm
22cm
50cm
88cm
139cm
200cm
2
1.8cm
5.1cm
8cm
18cm
31cm
70cm
126cm
198cm
288cm
2.8
2.6cm
7.2cm
11cm
25cm
44cm
101cm
181cm
286cm
420cm
4
3.6cm
10cm
16cm
36cm
63cm
144cm
262cm
421cm
5.6
5.1cm
14cm
22cm
51cm
91cm
210cm
391cm
651cm
8
7.3cm
21cm
32cm
73cm
132cm
316cm
622cm
11
10cm
29cm
46cm
107cm
197cm
512cm
16
14cm
42cm
67cm
161cm
313cm
22
21cm
62cm
100cm
260cm
32
30cm
94cm
160cm
518cm
45
45cm
117cm
244cm

 

 

 

 

 

 

 

 

 

 

 

 

 

Ajánlott irodalom:

1. Legelőször Nagy Krisztián remek, kimagasló, magyar nyelvű munkáját ajánlom mindenki figyelmébe: http://pixinfo.com/cikkek/fotoelmelet_optika_4

3. Wikipedia angolul: http://en.wikipedia.org/wiki/Depth_of_field

4. Mélységélesség számoló: http://www.dofmaster.com/dofjs.html

Kérdések és válaszok:

A mélységélesség a szűkebb rekesznyílások esetén nagyobb. - (igaz)

A mélységélesség a nagyobb leképezési arányok esetén kisebb.- (igaz)

Kisebb tárgytávolságoknál a mélységélesség is kisebb - (de csak ha a képkivágás is megváltozik.)

A nagylátószögű objektívek mélységélessége nagyobb. - (de csak akkor törvényszerű, ha a képkivágás is megváltozik.)

A teleobjektívek mélységélessége kisebb - (de csak ha a képkivágás is megváltozik.)

A kisebb képérzékelővel rendelkező digitális fényképezőgépek mélységélessége nagyobb - (de csak azonos rekesznél)

A mélységélesség a szóródási kör átmérőjétől függ. (igaz)

Egy vázát kell lefotózni 50 vagy 100mm-es fókusztávolságú makróobjektívet válasszak a jobb mélységélesség eléréséhez? Helyes válasz: Mindegy

Szűkebb mélységélességű portrékat szeretnék készíteni, melyik objektívet válasszam, az 1.4/85-t, vagy a 2/135-t? Helyes válasz: Az 1.4/85-t.

Ötven-kétszáz fős csoportokat kell fotóznom, és mindig gond van a szűk mélységélességgel, milyen fókusztávolságú objektívet válasszak? Helyes válasz: Mindegy

Szeretem, ha a mélységélesség nagy legyen, 16x24 mm-s, vagy 24x36 mm-s, vagy esetleg rollfilmes 56x70 mm-s kamerát válasszak? Helyes válasz: mindegy, de természetesen nem ugyanazzal a rekesszel.

Készítenem kell egy 50x60 cm méretű portrét a lehető legkisebb mélységélességgel. A kisfilmes felszerelést válasszam, az 1.4/85mm-s objektívvel, vagy a 6x7 cm-s gépet 2.8/165 mm-s objektívvel? Helyes válasz: Mindegy

Eddig egy 16x24 mm-s érzékelővel rendelkező géppel fotóztam, és a 8-as rekeszt kedveltem legjobban. Most átváltottam egy FX méretes 24x36 mm érzékelőjű kamerára. Milyen rekeszt válasszak hogy a mélységélesség hasonló legyen? Helyes válasz: 11-t.

Eddig egy 24x36 mm-s kisfilmes géppel fotóztam, és a 4-es rekeszt kedveltem legjobban. Most átváltottam egy rollfilmes 56x70mm-s kamerára. Milyen rekesznyílást válasszak hogy a mélységélesség hasonló legyen? Helyes válasz: 8-t.

Az élességi sík előtt van a mélységélesség egyharmada, a mélységélesség kétharmada pedig az élességi sík mögé esik. Elterjedt nézet, de nem igaz.

Ha a fenti válaszok nem érthetőek, vagy hibásnak tűnnek, akkor újra érdemes elolvasni a mélységélességről szóló írásomat.